These functions work on otu_table, tax_table, sample_data or on data.frame and matrix.

peak_abundance returns, user specified number of rows and columns for otu_table.

#' peak_taxonomy returns, user specified number of rows and columns for tax_table.

peak_sample returns, user specified number of rows and columns for sample_data.

peak_base returns, user specified number of rows and columns for data.frame and matrix.

peak_abundance(x, nrows = 1:5, ncols = 1:5)

peak_taxonomy(x, nrows = 1:5, ncols = 1:5)

peak_sample(x, nrows = 1:5, ncols = 1:5)

peak_base(x, nrows = 1:5, ncols = 1:5)

# S4 method for phyloseq
peak_abundance(x, nrows = 1:5, ncols = 1:5)

# S4 method for phyloseq
peak_taxonomy(x, nrows = 1:5, ncols = 1:5)

# S4 method for phyloseq
peak_sample(x, nrows = 1:5, ncols = 1:5)

# S4 method for ANY
peak_base(x, nrows = 1:5, ncols = 1:5)

Arguments

x

a phyloseq or data.frame or matrix object

nrows

number of rows, to be specified as numeric e.g. 1, or sequence of numeric specified as 1:5. to return first to fifth row.

ncols

number of cols, to be specified as numeric e.g. 1, or sequence of numeric specified as 1:5 to return first to fifth col.

Value

Print user specified rows and columns

Examples

data("zackular2014")

peak_abundance(zackular2014, nrows=1:3, ncols = 1:3)
#>               Adenoma10-2757 Adenoma11-2775 Adenoma13-2803
#> d__denovo1773              0              0              0
#> d__denovo1771              0              0              0
#> d__denovo1776              0              0              3

peak_taxonomy(zackular2014, nrows=1:3, ncols = 1:3)
#> Taxonomy Table:     [3 taxa by 3 taxonomic ranks]:
#>               Domain        Phylum             Class           
#> d__denovo1773 "k__Bacteria" "p__Bacteroidetes" "c__Bacteroidia"
#> d__denovo1771 "k__Bacteria" "p__Bacteroidetes" "c__Bacteroidia"
#> d__denovo1776 "k__Bacteria" "p__Firmicutes"    "c__Clostridia" 

peak_sample(zackular2014, nrows=1:3, ncols = 1:3)
#>                investigation_type
#> Adenoma10-2757        metagenomic
#> Adenoma11-2775        metagenomic
#> Adenoma13-2803        metagenomic
#>                                                                                    project_name
#> Adenoma10-2757 The Gut Microbiome Improves Predictive Models for Diagnosis of Colorectal Cancer
#> Adenoma11-2775 The Gut Microbiome Improves Predictive Models for Diagnosis of Colorectal Cancer
#> Adenoma13-2803 The Gut Microbiome Improves Predictive Models for Diagnosis of Colorectal Cancer
#>                DiseaseState
#> Adenoma10-2757       nonCRC
#> Adenoma11-2775       nonCRC
#> Adenoma13-2803       nonCRC

dat.frm <- meta(zackular2014)
# specify specific columns
peak_base(dat.frm, nrows=1:3, ncols = c(1, 3, 4))
#>                investigation_type DiseaseState age
#> Adenoma10-2757        metagenomic       nonCRC  37
#> Adenoma11-2775        metagenomic       nonCRC  65
#> Adenoma13-2803        metagenomic       nonCRC  62

matrix_ab <- abundances(zackular2014)
peak_base(matrix_ab, nrows=1:3, ncols = 1:3)
#>               Adenoma10-2757 Adenoma11-2775 Adenoma13-2803
#> d__denovo1773              0              0              0
#> d__denovo1771              0              0              0
#> d__denovo1776              0              0              3